CHOPPER-STABILIZED OPERATIONAL AMPLIFIER

QUICK REFERENCE DATA				
Open loop gain	-	min. 10 ⁷		
Initial offset voltage		max. ± 10 μV		
Average offset voltage drift with temperature		max. $0.1 \mu\text{V/degC}$		
Bias current	- - ir	max. ± 70 pA		
Noise voltage (0,01 to 1 Hz), peak to peak		0,7 μV		

APPLICATION

The component possesses a high current and voltage stability therefore small d.c. and low-frequency signals receive accurate amplified reproduction. Changes due to environmental conditions such as temperature time and power supply voltages have only a minor influence on the circuit performance. Initial offsets are very small, therefore initial adjustments and periodic calibration can be eliminated in many applications.

DESCRIPTION

To obtain a high d.c. stability, the d.c. and low-frequency signals are chopped. amplified (a.c. amplifier) and then demodulated. The higher frequency component of the signal at the common input is fed via a capacitor directly to the wide-band amplifier (see block diagram, Fig. 1). Offset and drift of the wide-band amplifier is reduced by a factor equal to the gain of the a.c. amplifier.

Fig. 1 Block diagram

Fig. 2 Drawing symbol

sg = signal earth

In (-) = inverting input

out = output

 $+V_S$ = positive supply voltage $-V_S$ = negative supply voltage

0 V = common supply voltage

trim - offset voltage adjustment

MECHANICAL DATA

Dimensions (mm) and terminal location

Fig. 3

Fig. 4 Terminal location on 0, 1 inch grid.

ELECTRICAL DATA

Ambient temperature +25 °C, supply voltages +15/-15 V, unless stated otherwise.

Ambient temperature range

Operating, rated specification	0 to +60 °C
Storage	-40 to +85 °C

Power supply

Voltage, rated specification	_± 15 V ± 3%
derated specification	± 12 V to ± 18 V

Typ. current at
$$+15/-15$$
 V $+7/-7$ mA + load current at $+12/-12$ V $+4/-5$ mA + load current

Open loop gain
$$(R_L = 2 k\Omega)$$
 min. 10^7

Frequency response

Unity gain bandwidth (small signal)	min. 0,5 MHz (frequency roll-off 6 dB/oct.)
Full power frequency	min, 5 kHz
Slewing rate	min. 0,3 V/µs
Overload recovery time	typ. 3 s, max. 5 s

For method which will substantially reduce recovery time, see circuit of Fig. 5.

Input data

Initial offset voltage	typical	maximum
(adjustable to zero with 100 kΩ potentiom.")		± 10 µV
Average offset voltage drift with temperature		0,1 μV/degC
Average offset voltage drift with supply voltage		0, ΓμΥ/%
Average offset voltage drift with time	1 μV/month	
Bias current		± 70 pA
Average bias current drift with temperature		0,7 pA/degC
Average bias current drift with supply voltage	0,4 pA/%	
Average bias current drift with time	10 pA/month	

 $^{^{*)} \, \}text{Potentiom} \, \text{eter} \, \, \text{to} \, \, \text{be connected between +V}_{\, \text{S}} \, \, \text{and} \, \, \text{-V}_{\, \text{S}} \, \, \text{, slider to "trim".}$

		<u></u>
Input voltage range	± 20 V	
Noise voltage 0,01 Hz to 1 Hz, p-p 0,01 Hz to 10 Hz, p-p 10 Hz to 5 kHz, r.m.s.	0, 7 μV 5 μV 2, 5 μV	
Noise current 0.01 Hz to 1 Hz, p-p 0.01 Hz to 10 Hz, p-p	5 pA 40 pA	
Burst noise (popcorn noise) peak voltage of CSA70L, measured across 100 k2	< 15 μV	
Input impedance	min. 200 kΩ	
Output data Output voltage, $R_L = 10 \text{ k}\Omega$ $R_L = 2 \text{ k}\Omega$	<u>typical</u> ± 14 V ± 13 V	<u>minimum</u> ± 12 V ± 10 V
Output current Output resistance (without feedback)	± 12 mA	max. 200 Ω
		11mx. 200 54

Continuous short circuit is allowed between the output and earth, or between the output and supplies.

Fig. 5
D1 - D4 = BAW62
D5, D6 = BZX79/C10 or
BZY88/C10
The resistors are carbon

types, 1/8 W, 5%

APPLICATION INFORMATION

For extensive information on theoretical background and practical applications of operational amplifiers refer to our Application Book: "Measurement and Control using 40-series modules", order number 9399 263 05901.

1. Logarithmic amplifier (6 decade)

Fig. 6 V_i = 10 μV to 10 V. TR1, TR2 = matched transistor pair, thermally coupled. U2, U3 = general purpose amplifiers.

2. Inverting amplifier with very high input impedance

Fig. 7

 $+V_S$ and $-V_S$ must be floating.

$$V_0 = \frac{R2}{R1} V_i$$

$$Z_i > 100 \text{ M}\Omega$$

(Note that input floats with respect to supplies, and that gain can be chosen less than unity.)