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Modern  Network  Theory  Design of Single- 
Sideband  Crvstal  Ladder  Filters 

J 

R9. DISH-\L, 

Abstract-This paper  presents  modem network  theory  design 
data  (rather  than  image  parameter  data)  for  one  class of ladder  net- 
work SSB crystal filters. The filter configuration involved uses 
crystals  and capacitors only, so that  the physical  size of the resulting 
filters can  be  made quite small. A simple  frequency  transformation 
is  first  derived which enables  the  wealth of design data presently 
available  for  symmetrical  response  shape  filters to  be applied to  the 
SSB response under consideration. It  is shown that  the  transfer 
function  being  considered has n nonconjugate complex poles and n 
coincident  zeros  in  the  fractional  bandwidth left half-plane.  From 
the  frequency  transformation  developed,  graphs are  presented  for 
n-pole, n-coincident-zero SSB relative-attenuation  shapes  for n = 6, 
8, 10, and 12, with  a  pass  band  peak-to-valley  ratio of zero  decibels; 
and  a  computation  example  shows how graphs  may  be  prepared  for 
any R,  and any pass  band  peak-to-valley ratio. Specilic  design  equa- 
tions are  presented  for all the  elements  involved  in  both  the upper 
and lower SSB filter structures,  and  from  these  an  equation  is  de- 
rived which shows how crystal  units l i i i t  the maximum  fractional 
bandwidth  which  can be obtained. 

w I .  IKTRODL-CTIOS 
H E S ,  for  reasons of system  performance, i t  is 
desired to  provide  a  high-rate-of-cutoff  band- 
pass  characteristic a t  such  a  mid-frequency that 

the  ratio of this  mid-frequency to the desired  3-dB 
bandwidth is of the  order of 1000 or greater,  then i t  is 
almost  mandatory  that  crystal  resonators  be used in the 
filter.  (This  is  true  whether  symmetrical or single- 
sideband (SSB) type of band-pass  filtering is desired.) 

When  an  SSB  filter is required  to  pass  the  upper  side- 
band,  and  the desired  fractional  pass  band is as  de- 
scribed  previously,  i.e. of the  order of one  part in one 
or  two  thousand,  there is a particularly  simple  and 
practical  crystals-and-capacitors-only  ladder-type  filter 
configuration which can  be used to  satisfy  such  a  re- 
quirement;  the  ladder  configuration is shown in Fig. 9. 
For lower sideband  filters,  the  configuration  is  as  shown 
in Fig. 10. As will be  seen,  for  upper  sideband  filters, 
the  ladder  consists  simply of crystal  units  plus  shunting 
capacitors  in  the  shunt  arms,  and  capacitors  only  in  the 
series arms; vice  versa  for  lower  sideband  filters.  These 
configurations were  described as  long  ago as  1934 by 
Mason [l] ,   and more  recently in 1958 b\-  Sykes [2]. To 
the  best of the  present  author’s  knowledge,  all  the  de- 
signs of these useful SSB  filters  have been  based on 
image  parameter  theory, which means that  the element 
values  called  for are based  upon the use of physically 
unrealizable  terminations,  i.e.,  characteristic  imped- 
ances. 
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I t  is the  purpose of this  paper  to  present for these  lad- 
der  networks  an  “exact”  modern  network  theory  design, 
giving the  element  values  required  to  obtain  the  exactly 
specified relative-attenuation  shapes of which these 
SSB filters are  capable. 

Fig. l (a )  is a  photograph of a lower sideband  filter 
(on the  left)  and  an  upper  sideband  filter (on the  right) 
of the  type  to  be  described,  and  illustrates  the  small 
physical size that results when crystals  and  capacitors 
only  are  required  in  a  filter.  Fig. l (b)  shows the  swept 
relative  attenuation of the  upper  sideband  unit on a 
logarithmic-attenuation  scale.  The  unit  operates a t  5 
ILIc/s; supplies  a  3-dB-down  bandwidth of 3.5 kc/s;  has 
a sharp cutoff edge  which  falls to  60-dB  relative  attenua- 
tion in 560 c,’s;  provides  30-dB  attenuation  for  the 

(b) 
Fig. 1. (a) Lower  (on left)  and upper (on right)  sideband  crystals- 

and-capacitors-only SSB filters. (b)  The swept  relative attenua- 

The 80dB limitation is  in the logarithmic  measuring  equipment, 
tion on a logarithmic-attenuation scale of the upper  sideband  unit. 

not in the filter. 
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carrier  frequency;  and  maintains  more  than  60-dB 
rejection  for  two  pass  band  widths below the carrier. 
The  relative  attenuation  illustrated  agrees  with  that 
foretold  by the  theory  to be  presented,  with  gratifying 
accuracy. 

11. A BASIC LADDER KETWORK .AND ITS GEU I ERhLIZED 
RELATIVE-ATTENL-ATION SHAPE 

Fig. 2 shows the basic  node-type  ladder,  modification 
of which will produce  the final crystals-and-capacitors- 
only  upper  sideband filter. In  order  to  make  sure  that 
the  reader realizes that  no actual  inductors will be  re- 
quired in the final network of Fig. 9, i t  is  worth  stressing 
here the  fact  that  the  inductors shown in Fig. 2 will, in 
a  later design step,  be  absorbed in such  a  (proper)  way 
that  only  crystals  and  capacitors  remain  in  the final 
ladder. 

In Fig. 2, each  node is parallel-resonated to a fre- 
quencyfo  with all other  nodes  short-circuited;  the lower 
case d's and k's are  pure  numerics  commonly  known  as 
normalized decrements  and normalized  coefficients of 
coup1ing;Gl andGnare  the  conductances of the  generator 
and load  resistances; B1 through B ,  are  the  magnitudes 
of the  equivalent  capacitive (or inductive)  susceptance 
of the respective  ladder  nodes at  the  node-resonant fre- 
quency;  and Blz through  B+lln  are  the  magnitudes of 
the  susceptances of the respective  coupling  elements. 
In  each  coupling a the  two  inductors  and  one  capacitor 
involved  have  the  same  susceptance  magnitude,  and  it 
is  assumed  (realistically) that  the  percentage  bandwidth 
of interest  in  the region of the mid-frequency is so small 
that  the  susceptance of any  arm in the coupling  mecha- 
nism changes negligibly  with frequency. 

If one  solves for the complex transfer  function of Fig. 
2 by  the  straightforward  application of Kirchhoff's 
Laws, the  resulting  equation  takes  the well-known 
form 
output 

Input 
t - - (1) (in)" + U(n-l)(jD)"-l + U(,-*)(jV)(n-2) + . * . 240 

where the coefficients (u's) are  pure real  numbers  made 
up of various  combinations of the d's and k's, and  hav- 
ing  values  such that  n / 2  conjugate complex pairs of 
poles can  be  obtained for n even;  and (n- 1)/2  conjugate 
pairs and  one  real pole can  be  obtained  for n odd. 

Over  the  last 25 years,  a  large  body of knowledge  has 
evolved  concerning the  relative-attenuation  shapes 
which can  be  obtained  from  networks  supplying  such 
transfer  function  poles;  and i t  is now well known  that 
vs. the generalized frequency  variable v ,  Butterworth, 
Chebyshev,  maximally  linear  phase,  Gaussian  magni- 
tude,  etc.,  are  some of the useful relative-attenuation 
shapes  that  can  be  obtained  by  proper location of the 
transfer  function poles in thejv  plane [3]-[SI. 

The  relative-attenuation  shape given at  the  bottom 
of Fig. 2 is the  Chebyshev  shape;  but  the  reader will 

SMALL-PERCENTAGE - BANDWIDTH  NODE-NETWORK  CASE 

REWIRED d'S AND IC's. AND RESULTING RELATIVE-ATTENUATION SHAPES 
VERSUS VARIABLE v ,  GIVEN IN [4] -[SI. 

Fig. 2. The basic small-percentage-bandwidth node network and 
its resulting  symmetrical relative-attenuation shape. (It  is im- 
portant  to realize that  the  inductors shown are properly absorbed 
in a later design step, so that in the final network of Fig. 9 no 
physical inductors  are required.) 

realize that  the  other  shapes mentioned  in the preceding 
paragraph  can  also  be  obtained  as  a  function of the gen- 
eral  variable et. 

For  the network  designer, the  proper  locations of the 
complex frequency poles are only  a  means to  an  end;  the 
end being the  proper  element  values in his  network. -4s 
will be  seen  from  Fig. 2 ,  the normalized  decrements (d's) 
and normalized  coefficients of coupling are  one  set of 
constants which give the  network  designer  immediately 
applicable design information  for  obtaining  his  required 
element  values.  By  means of the well-known Darlington 
procedure  [SI,  [6],  or any  equivalent  procedure,  one 
can  obtain  the  required  network d's and k's for any  and 
all of the previously  mentioned  relative-attenuation 
shapes,  and  because  the  information is obtained in nor- 
malized form,  the large amount of work  involved need 
only  be  done  once  by  some  person or group,  and  then 
should  properly be considered  a piece of available 
knowledge. These  required d(  = l /q )  and k values  have 
been  given  [4],  [6] for the  symmetrical  Butterworth, 
Chebyshev,  and  maximally  linear  phase  responses  [4], 
[6],  and for the  symmetrical  Gaussian  magnitude  re- 
sponse  [SI.  In  addition,  the  detailed  characteristics of 
the  various  symmetrical  relative-attenuation  shapes 
have  been  given in these references. I t  should  be re- 
alized,  however, that  in  these  references, the abscissas 
of the  relative-attenuation  graphs  are labelled in  terms 
of actual  frequency,  whereas for the purpose of this 
paper  these  abscissas  must  be  considered to  be a  gen- 
eralized  variable v .  

Because of space  restrictions,  this  large  amount of 
available  information will not  be  repeated in this  paper, 
and i t  will be  assumed  that  the  reader will make use of 
the  appropriate reference.  However, to  complement  the 
relative-attenuation  examples  to be  presented  as Figs. 
5-8  of this  paper,  Tables I and I1 are  introduced,  giving 
(from  these  references)  the d's and k's required  to  pro- 
duce  a  pass  band which  is  maximally  flat (Table I ) ,  and 
one  having  a  peak-to-valley  ratio of 0.1 dB  (Table 11). 
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T-IBLE I 
~ - D B  BANDWIDTH SORMALIZED d's A S D  k's R E Q ~ I R E D  TO 

PRODCCE A MAXIMALLY-FLAT PASS BASD 

n I 6  8 

2.56 
1 . 5 2  
0.734 
0.551 
0.510 
0.551 
0.734 
1.53 

2.56 

10 

3.20 
1.88 
0.883 
0.630 
0.533 
0.507 
0.533 
0.630 
0.883 
1.88 

3.20 

12 
~ 

3.83 
2.24 
1.036 
0.719 
0.585 
0.522 
0 .so4 
0,522 
0.585 
0.719 
1.036 
2.24 
3.83 

T-ABLE I 1  

A PASS BASD PEAK-TO-VALLEY RATIO OF 0.1 DB 
3 - D B  BASDWIDTH SORMALIZED d's A S D  k's REQUIRED TO PRODLXE 

6 1 8  10 

0.788 1 0.796 I 0.805 
0.716 0.727 0.734 
0.539 1 0.545 ~ 0.550 0.518 0.516 0.519 
0.539 
0.716 I 0.516 

0,545  0.509 
0,727  0.519 

0.550 
0.734 

0.788 1 0.796 1 0.805 

12 

0.811 

0.551 
0.739 

0.521 
0.510 
0.506 
0.504 
0.506 
0.510 
0.521 
0.551 
0.739 
0.811 

111. THE FREQCENCY \'ARIABLE FOR A 

CRYSTAL SHCXT ARM 

As pointed  out in  Section I1 and Fig. 2, a  large  body 
of already  known  detailed design data  can be  made use 
of for  designing  band-pass  networks  in  the form of Fig. 
2 ,  if the  admittance of all the  shunt  arms being used can 
be  written in the form 

E' = j B J  (2) 

with  all the  terms  involving  variable  actual  frequency 
being  contained in the  factor v.  

.As an  example,  let us take  the well-knon-n symmetri- 
cal  band-pass  case  obtained when the  shunt  arms  con- 
sist of simple  parallel-resonant  circuits, as  shown in the 
top  part of Fig. 3. The  admittance of this  simple  arm 
is given  by 

and for the  small-percentage-bandwidth  case  being  con- 
sidered  in  this  paper,  wherein 0.95 < (w/oo) < 1.05, i t  is 
&.ell known  that  the  bracketed geometrically  symmetri- 
cal frequency  variable of (3) approaches  the linear  frac- 
tional  bandwidth  variable of (4), 

t7k-l 
TWO USEFUL Y's 

Fig. 3. (a) A simple admittance  often used fox the  network of Fig. 2. 
(b) A n  admittance  similar in form to  that of a crystal unit. 

Thus, if simple  parallel-resonant  arms  are used in the 
network of Fig. 2, a  comparison of (2) and (3) shows that 
the  relationship  between  the  symmetrical  general  vari- 
able E' and  actual  frequency is given  by 

Now, let us obtain  the  relationship  between  our  gen- 
eral  symmetrical  variable v and  actual  frequency when 
a  crystal  unit is used for the  shunt  arms of the network 
of Fig. 2. The  bottom  part of Fig. 3 shows the  two 
equivalent  circuits for  such an  element  and, with the 
realistic  approximation that  ro>>l, gives the  relation- 
ships  between  the  various  element  values in the  two 
equivalences.  Straightforward Kirchhoff Law analysis 
for the  admittance of such an arm  results in 

1 e-3 
E' = jwoco i  1 (6) 

1 '+@(:)(:-:) J 

and for the  small-percentage-bandwidth  case being con- 
sidered  in  this  paper, wherein 0.95 < ( w / w o )  <1.05, (6) 
may  be  written  as 

where F is the  frequency  function  given in (4), ro is the 
ratio of Co to  C, in the first  equivalent  circuit,  and Co 
is as  shown  in the first  equivalent  circuit. 

For  small-percentage-bandwidth  networks,  the  actual 
frequency  variable which  is most useful to  the designer 
is the much-used  fractional  bandwidth  variable of (4), 
and,  through  the  medium of (6), Fig. 3 shows the wa>. 
the  admittance of the  crystal  arm varies  vs.  this  fre- 
quency  variable F. 

Comparison of (2) and (6) gives us ( 7 ) ,  the  relation- 
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ship  between  our  general  variable v and  actual  fractional 
bandwidth, 

F 

1 + roF 
v = - .  (7) 

A .  Transfer  Function  Poles  and  Zeros on the  Fractional 
Bandwidth  Plane 

If (7) is  substituted in ( l ) ,  we  will then  obtain  the 
transfer  function  produced  by  this  network  in  terms of 
the desired  fractional  bandwidth  variable.  The  resulting 
equation  has  a  denominator  which  is  a  polynomial in 
terms of ( j F ) ,  of highest  power n, where n is  the  number 
of crystals  used,  and  with  complex coefficients rather 
than  pure  real  coefficients;  the  resulting  numerator of 
this  transfer  function is not  a  constant,  but is (l+roF)".  

The  numerator just  described  means that  there  are 
n-coincident  real  frequency  transfer  function  zeros  sup- 
plied by  this  network;  and  the  denominator just  
described  means that  there  are n complex  left  half- 
plane  transfer  function poles supplied  by  this  network. 
The  fact  that  the coefficients of the  denominator  poly- 
nomial are complex,  means that these n poles do not 
occur  in  conjugate  complex  pairs;  each pole has  both  a 
real and  an  imaginary  coordinate which is  different  from 
those  for  any  other pole. However,  there  are  still n of 
these poles  laid down in the  left half of the [jF/(BW3/fO) ] 
plane,  and  therefore i t  is proper  to  classify  the  nonsym- 
metrical SSB response  involved as  an n-poles,  n-coinci- 
dent-zeros  transfer  function,  where n is the  number of 
crystals  used. 

By  substituting  the  well-known pole locations  for  the 
symmetrical  Butterworth  and  Chebyshev [7], 1' mear 
phase [ 8 ] ,  Gaussian [SI, etc.  response  shapes  in (9) (to 
be  developed in the  next  section),  the  reader  can  obtain 
numerical  values  for  the  left  half-plane SSB pole  loca- 
tions on thejF/(BW3/fO)  plane.  These  transformed pole 
locations will produce  the  SSB  relative-attenuation 
shapes  to  be  described  in  the following section.  Versus 
actual  bandwidth,  the  transformed  linear  phase  and 
Gaussian  shapes will, of course, no longer be  linear  phase 
or  Gaussian.  Reference  to  these  shapes is included  be- 
cause  the  resultant  transformed  shapes  may  prove  to  be 
useful. 

IV. THE RESULTING  UPPER SIDEBAND FILTER 
RELATIVE-4TTENUATION SHAPE 

A .  Equations  Related  to fo 
To  obtain  the  relationship  between  fractional  band- 

width  and  the  symmetrical  variable v ,  we merely  solve 
(7)  for F and  obtain 

V F = - .  ( 7 4  
1 - rov 

Relative-attenuation  plots  must, of course,  be  nor- 
malized to  some  clearly  defined  reference  bandwidth; 
one of the  most  common  and useful of these  is  the  3-dB- 
down  bandwidth, which we  will use. 

At  the  3-dB-down  point,  the  general  symmetrical 
variable v is given  the  subscript v3, and  the  correspond- 
ing  fractional  bandwidth will be 

v 3  
F3 = - (7b) 

1 - 1 0 0 3  

where  both v3 and Fa are  algebraic. 
To  obtain  the  equation for the  total  3-dB-down 

bandwidth, we add  the  two  magnitudes  obtained  from 
(7b); when v3 is first  made  positive  to  obtain  the  upper 
3-dB  fractional  bandwidth,  and is then  made  negative 
to  obtain  the lower 3-dB-down  fractional  bandwidth. 

The  resulting  expression is given  by 

Dividing (7a) by (8) we obtain  the normalized  trans- 
formation  equation 

Equation (9) enables  us  to  take all the  symmetrical 
relative-attenuation  plots  given  in  the  literature  for  But- 
terworth,  Chebyshev,  maximally  linear  phase,  Ganssian 
amplitude,  etc.  and  transform  them  into  the  upper 
sideband  relative  attenuations  which  result when crystal 
units  are used in  the  network of Fig. 2. As previously 
noted,  when  this  is  done  the  resulting  pass  bands  are no 
longer  linear  phase or Gaussian vs. actual  bandwidth. 

Remembering that  the general  band-pass  frequency 
variable v is algebraic,  and  that  it  is  positive  above  the 
resonant  frequency  and  negative below resonance, 
examination of (9) shows that  the  SSB  relative  attenua- 
tion is laid  down  in  three  distinct  regions. 

These  three  regions  are  detailed  in  Fig. 4, which shows 
graphically  the  relationship  between  the  already  pub- 
lished  symmetrical  relative-attenuation  graphs  and  the 
upper  sideband  relative-attenuation  curves  into which 
they  can  be  transformed. 

Notice that in (9) and  in  Fig. 4 the  quantity l/rov3 
has  been  maintained  as  one  entity. iVe see from  Fig. 4 
that  this  quantity  sets  the  location of the  frequency of 
infinite  rejection  and,  as we will see later, i t  is an  im- 
portant  parameter whose value  the  filter  designer  must 
pick. 

B. Equations  Related  to  the  Arithmetic  Middle of the 
3-dB-Down  Bandwidth 

When  dealing  with a single-sideband  filter specifica- 
tion,  the  node-resonant  frequency ( f o )  is, in  general, 
never  specified;  instead  the  two  frequencies  defining  the 
edges of the  pass  band  are specified. As already  noted, in 
this  paper we are using the  3-dB-down  bandwidth  as  the 
normalizing  bandwidth,  and i t  would be  most  conven- 
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Fig. 1. The  manner i n  which 191 tlansforms  the s!-mmetriral 

attenuation shape. 
relative-attenuation shapes cf [4]-[6] into an upper SSB relative- 

ient,  therefore,  to  express  the  various  frequency  relation- 
ships in terms of frequenq-  deviations from the  arith- 
metic  middle of this  3-dB-down  pass  band.  The  simple 
relationship  between  the  two  3-dB-down  frequencies, 
the  half-bandwidth (BTV3,'2), and  the  arithmetic  mid- 
frequency  is  given  b\- 

To  obtain (9), in terms of the  arithmetic mean  fre- 
quency f m ,  we must first obtain  an expression f0r f3~ or 
f 3 H  in terms off0 and BW3 ' 2 .  Equation (9) with  set 
equal  to - 1.0 and  f1.0, respective]!-, gives the required 
expressions, which are 

For Region B (the  "return hill" portion of the  relative 
attenuation), 

and 

and  the  magnitude of (14) can  be wi t ten   as  

and 
and 

Finally, for Region C (the  sharp cutoff edge), 

\Ye can now substitute (13) into (9) to  obtain  (14),  the 
normalized  transformation  equation in terms of the 
arithmetic  mean  frequency fm, 

2' 

f - f m  - A f m  - IMm - 1 

I M  -Iz'3/ 
BW3/2 BTT73/2 

- 
* (14) 

2' 

For  the  three regions  shown  in  Fig.  4, the  magnitude 
of (14) can  be  written as: 

- <(t) < o  

and  the  magnitude of (14) can  be  written  as 

- 1  + ! - '  ! rora 1 , ~ 

Transformation  equations  (14a)-(  14c), in conjunction 
with the  symmetrical  variable  relative-attenuation 
curves  and  equations of [4]  and [j], have  been used to 
plot  the  SSB  relative-attenuation  graphs of Figs. 5-8. 

Table I11 is an  example of the  computations  involved 
in preparing  these  curves;  and,  through  construction of 
similar  tables,  the  reader  can  prepare  relative-attenua- 
tion  graphs for this  n-pole,  n-coincident-zeros  family of 
SSB attenuations for any chosen n, pass  band  ripple, 
and l / rov3 .  
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(4 ( C )  

Fig. 5. (a) 6-pole,  6-coincident-zero SSB  relative-attenuation shape Fig. 6. (a) &pole,  8-coincident-zero SSB relative attenuation shape 

3-dB-down  points. (c) Expanded  relative attenuation of sharp dB-down polnts. (c) Expanded relative  attenuation of sharp cut- 
(Vp/VO=O dB). (b) Expanded relative  attenuation inside the ( V p / V v = O  dB). (b) Expanded  relative attenuation inside the 3- 

cutoff  edge. off edge. 
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(C) 

Fig. 7 .  (a) 10-pole, 10-coincident-zero SSB  relative attenuation 
shape ( Vp/Vz=O dB). (b) Expanded  relative attenuation inside 
the 3-dB-down points. (c) Expanded  relative attenuation of 
sharp cutoff  edge. 

Fig. 8. (a) 12-pole, 12-coincident-zero SSB  relative-attenuation 
shape ( Vp/Vc=O  dB). (b) Expanded  relative attenuation inside 
the 3-dB-down points.  (c)  Expanded  relative attenuation of sharp 
cutoff edge. 
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T;\RLE 111 
COMPUTATION EXAMPLE FOR 10-POLES, 10-COISCIDEKT-ZEROS 

SSB RELATIVE ATTESUATIOS FOR V,/V,=O DB 
ASD 1/7&=1.6 

dB 

0 
0- 

.1 

. 2  
1 
2 
3 
6 

10 
20 
30 
40 

50 
60 
70 
80 
m 

From (41 

1.6-X 1 (t) 
Slow cutoff 

side 
1.6 X-1 

-I- 
O 

1 .Ooo 
0.973 

0.746 0.935 
0.502 0.859 
0.415 0.826 
0 0.625 

-0.625 

0.887 
1 .Ooo 

1 ,056 
1.116 1 ,628 

1.270 

1.411 1 6.66 
1 . X 8  2.953 

1 . 6 0  
1.586 ~ 

109.6 

1.779 1 
1.994 

2.515 

X 

X 

Return 
hill 

1.6  X-1 

X- 1.6 

XI 

10.30 
5.56 

3.32 
1.60 

4.4n 

___.__ 
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1.220 
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I t  may  be  helpful a t  this  point  to  obtain  the  exact 
relationship  between  the  important  parameter l/rov, 
and  the  location of the  infinite-attenuation  point.  From 
Fig. 4 we see that infinite  attenuation is reached  when 
the  symmetrical  variable I v / v 3 /  equals  infinity;  insert- 
ing  this  value  for v /v3  in (14) results in 

Thus, we see that  the  parameter  l/rov3  sets  directly  the 
ratio of the  bandwidth  between  the  infinite-attenuation 
frequency  and  the  center of the  pass  band  to  the  3-dB- 
down  half-bandwidth. 

Since  with  this  particular  SSB filter all the  crl-stals 
are series  resonant a t   the  frequency of infinite attenua- 
tion,  the  solution of (15) wi l l  produce  (15a),  the  design 
equation which will specify the  required  crystal series- 
resonant  frequency, 

(15a) 

For  a  given  number of crystals ( n )  and  a given  peak- 
to-valley  ratio (V,/  V,), there is another  characteristic 
of the  relative  attenuation which is immediately  set 
when the  parameter l/rovo is chosen;  this is the  ultimate 
attenuation  (Db,), which will be  approached  far  from 
the  pass  band,  but still within  the  small-percentage- 
bandwidth  region. As Fig. 4 shows,  this  ultimate  attenu- 
ation  occurs at the  transition  point  between  Region A 
and Region  B, i.e., when (16) applies, 

Thus  on  the  symmetrical  relative-attenuation  graphs, 

or  equations, of [4]  and [SI, the decibel attenuation  ob- 
tained  when  the  abscissa  has  the  value 1/r0v3 is the  ulti- 
mate  attenuation  that  the chosen n, (V,/ V v ) ,  and  l/rovs 
can  approach  in  the  small-percentage-bandwidth  region. 

C. A Method for Obtaining the Required l/rov3 

The  graphs of Figs. 5-8 enable  an engineer to  start  
his  design  by  picking  the  approximate  number of crys- 
tals  required  to  satisfy  his  particular SSB filter specifica- 
tion. To arrive at  the  exact  value of l/rovg  and (V,/ Vn), 
and  at  the  exact  number of crystals  required,  the follow- 
ing  procedure  may  be used 

Step 1 .  Given: 
a)  Required  decibel  attenuation (dB,) 

at a specified bandwidth (fm-fe)=Af, 
on the  sharp cutoff edge. 

b) Required  ratio of A f c  to BW3/2.  

c)  Surnber of crystals. 
d)  Pass  band  ripple. 

Pick : 

Step 2.  From  the  relative-attenuation  curves, or 
equations, of [4]  or [SI obtain  the  cor- 
responding I vIv3 1 C. 

Step 3. Calculate  required  l/rov3 from (17). 

(i&>I:l - E l  = Af c (1 7) I N c  - E G  
Because i t  is the  sharp cutoff  edge that is involved  in 

these  steps, (17) is obtained  simply  by  solving (14c) for 
llrov3. 

Step 4. Use (14b)  to  determine a t  what  bandwidth 
on the  return hill the specified decibel  rejec- 
tion  is  obtained, when the l/rov3 of Step  3 
is used. 

1 
1 z13 I C  I r0v3 I 

If this  reject  bandwidth is too  narrow,  then  a  larger 
peak-to-valley  ratio  in  the  pass  band  or  a  larger  number 
of crystals  must be picked,  and  Steps 1 through 4 re- 
peated,  until  the  required  reject  bandwidth is obtained. 

V. REQUIRED  UPPER-SIDEBAND  NETWORK  ELEMEXT 
VALUES WHEN ALL CRYSTALS ARE IDENTICAL 

It  has  already been  pointed  out  that  for  the  simple 
SSB  shape  being  considered,  all  the  crystals  being used 
have  the  same  series-resonant  frequency  given  by  (13a). 
For  ease of manufacture, i t  would be  highly  desirable 
that all the  crystals used  also have  the  same  motional 
capacitance C,. 

From  the  equivalence  shown in Fig.  3, we see that  the 
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admittance of the  motional  capacitance of the  cr?-stal 
unit is related to  the  node  admittance level Bo by 

Thus, for all the  crystals  to  have  the  same  required 
motional  capacitance, n-e see that B1,  BS, B3, etc. in Fig. 
2 must  have  the  same  value  for  each  node  (since,  as  has 
already been pointed  out, ro sets  the  location of the 
infinite-attenuation  frequency, which frequency is 
identical  for  each  node). 

\Ye can now return  to Figs. 2 and 3 and  substitute in 
the general  element  value  equations  given  there.  We see 
from  Figs. 2 and  3  that  equations will be  required for 
13 and ro; let us now obtain  these. zl3 is obtained  directly 
by  solution of (8) to  obtain 

Dividing  the  product rOv3 by (19) will, of course,  give 
Y O ;  we thus  obtain 

A .  The  Required  Loading  Resistors 

Returning  to Fig. 2 we see that  the  required  con- 
ductance of the first  node  loading  resistor is given  by 

GI = dlB11 2'3 I (21) 

where dl( = l/ql) is given in the design  tables [4]-[6], 
B1 is the Bo of (18), and 03 and ro are  given  by (19) and 
(20), respectively.  Substitution of these  equations  in 
(21) results in our  first  network  design  equation, 

The design  equation  for  the  conductance G, of the 
required  loading  resistor  across  node n will be  identical 
in form,  with G, replacing GI, and d, replacing dl. 

B.  The  Required  Coupling  Capacitors 
Again  returning  to  Fig. 2, we see that  the  required 

susceptance of the  first  coupling  capacitor is given by 

where klz is  given in the design  tables  and  equations of 

Substituting (18)-(20) into (23) produces  the  second 
[4 1- [6 3. 
design  equation, 

An equation of identical form n-ill be  obtained  from 
the  required  value of the  other  coupling  capacitors,  with 
C23,  C34, etc.  replacing CIS, and k 2 3 ,  k34,  etc.  replacing kl2. 

C. The  Required  Crystal  Series-Resonant  Frequency 
I t  has  alreadl-  been  pointed  out  that in this  network 

the  frequency of infinite  attenuation is the series- 
resonant  frequency of each  crystal.  This  frequency of 
infinite  attenuation is given  by ( l ja)  and,  therefore,  the 
design  equation for series-resonant  frequenq- of every 
crl-stal is 

To  give the  required  crystal  series-resonant  frequency 
in  terms of the specified 3-dB-down  point on the  sharp 
cutoff edge, (10) is substituted  into (25) to  obtain 

D. The  Required  Shunt  Capacitances  Across  Each  Node 
Inside  each  shunt-arm box in the  network of Fig. 2 

there would  be  placed the  bottom  equivalent  circuit of 
Fig.  3.  We  see,  therefore, that  inside  each  box  there 
would appear  a  capacitance (C,) shunting  the series- 
resonant  circuit,  and  from  the  definition of ro given  in 
Fig.  3,  the  value of C, would  be obtained from 

co c = - = y  oc,. ( 2 9  
yo 

I t  is important  to realize that C, is not  the  shunt 
capacitance  to  be used in  the  real-life  network. As can 
be  seen  from  Fig. 2, this  capacitance Cs, inside  each  box, 
is shunted  by  two  inductors,  one from the  coupling ?r 

preceding it, and  one from the  coupling ?r following it. 
Over  the  small-percentage  bandwidth  involved  in  these 
filters,  the  resultant  susceptance of this  parallel  com- 
bination  can  be  approximated  by a new capacitance of 
susceptance. 

B,, = roB, - B1? (284 

Bps = roB, - (B12 + B23) 

B,, = rOBz - (B23 + B34) (28c) 
etc. 

If we now substitute (20) and (24) in  the  preceding 
equations, we obtain  our  desired  design  equation, 

and  an identical  equation in form will be  obtained  for 
the  required  value of each  shunt  capacitance,  with C,, 
replacing Cp2, and (O+k12) replacing (kl?+k23), etc. 
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C,, is  the  required  shunt  capacitance  value which 
must  be  placed  across  the  rth-series  resonance,  and, of 
course, to find the  value of the  actual physical  capacitor 
which  must  be  added  across  each  crystal  unit,  the  crys- 
tal holder  capacitance (ch) would be  subtracted  from 
each C,. 

The resulting  crystals-and-capacitors-only  network, 
and  the preceding  design  equations  are  shown in Fig. 9. 

Another  method  for  obtaining  the  required  value of 
each C, is  contained  in  the  statement  at  the  bottom of 
Fig. 9. The  statement  is based  upon the following fact: 
If we calculate Ct ,  the  sum of the  three  capacitors which 
touch  each  node,  i.e., (C1,+CP,+C23) for  node 2 for 
example, we obtain  the  fact  that for  every  node 

i.e.,  the  total  capacitance  touching  each  node  (excluding 
the  series-resonant  circuit) is a constant of value  given 
by (30). This  fact  can  also  be used as  a  convenient 
double  check of the  numerical  design  work. 

I t  is  worth  presenting  another  viewpoint  concerning 
the  function of the  shunt  capacities Cpl ,  e,,, etc.  in  the 
network of Fig. 9. In  the  straightforward  node  network 
involved,  the  parallel-resonant  frequency Cfo) of each 
node,  with  every  other  node  short-circuited,  must  be  the 
same;  and  in  terms of the specified edges of the  pass 
band, (11) and (12) give  the  required  value of this  node 
parallel-resonant  frequency c f o ) ,  with  all  other  nodes 
short-circuited.  The  values of C,,, Cp2,  etc., a s  given  by 
(29) or (30), produce  this  correct  node  parallel  resonance. 

E. Maximum  Physically  Realizable  Bandwidth 
By  their  nature,  crystal  units  inherently possess a 

certain  minimum  possible  ratio of holder to  motional 
capacitance (C,/C,); for  example,  a  minimum possible 
value of approximately 200 is practical  for AT  cut  crys- 
tals  in  the 5-Mc!s region. In  the  network of Fig.  9, it is 
obvious that  the lowest  value that can  be  demanded of 
any C, is  the  capacitance ch of the  crystal  unit  being 
used.  Equation (29) is  thus  a powerful  one for  deter- 
mining  the  maximum  fractional  bandwidth which can 
be obtained  with  a  desired  shape  and specified crystal 
units.  Solving  (29)  for (BW3/f0) and  substituting (Ch/C, 
for C,/Cz, we obtain 

, I  . I 

I I - /  - 1  I 

A numerical  example of the usefulness of this  equation 
is worthwhile.  Let us consider the case  wherein  a speci- 
fied SSB requirement  can  be  satisfied  by  the  relative 
attenuation  produced  by  that 6-pole,  6-zero  maximally- 
flat pass  band  curve of Fig. 5 ,  having  l/ro vs equal  to 2.5. 

UPPER-SIDEBAND FILTER  DESIGN  RESUME 
FOR UNIFORM-NODE-ADMITTANCE  CASE 

ALL XTALS HAVE SAME 
CAPACITANCE  OF EACH NODE 
SAME AS THAT OF NODE #2 ALL XTALS SERIES RESONANT 

AT f v .  

Fig. 9. The final upper sideband filter configuration 
and  its element  value design equations. 

From  Table I ,  we see tha t   to  produce  this  shape, 
(klS+k23) for the  network  must  equal 1.77. Substitution 
of the preceding  values  into (31) shows that for  this 
particular  example  the  maximum  attainable  fractional 
bandwidth is 0.14 (C,/Ch). As Table 11, and  the d and k 
tables  and  equations of [4]  and  [6] show, the  required 
(klz+&) decreases as  the  allowable  peak-to-valley  ratio 
in  the  pass  band is increased;  this  fact,  plus  application 
of (31), shows that  the  maximum  attainable  fractional 
bandwidth  can  be  appreciably  increased  by  choosing a 
relative-attenuation  shape  having  maximum  allowable 
pass  band  ripple. 

VI.  DESIGN  EQCATIONS FOR A LOWER SIDEBAND 
CRYSTALS-AND-CAPACITORS-ONLY FILTER 

A .  The  Lower  Sideband  Relative-Attenuation  Shape 
For  the lower sideband  ladder  filter  shown  in  Fig. 10, 

(14a)-(14c), and all of the  relative-attenuation  data of 
Section  IV,  are  directly  applicable if the  identifying 
names of “slow cutoff side,”  “return hill region,”  and 
“sharp cutoff edge”  are used to  identify  the  three  fre- 
quency  regions  involved.  Therefore,  rather  than  redraw 
the  graphs of that  section, we  will assume  that  the 
reader will properly  identify  the  frequency  regions  in- 
volved  when  applying  them  to  the lower sideband  case. 

B.  Element  Value  Design  Equations fo r  the  Case of 
Equal  Mesh  Impedance  Levels ’ 

The element  value  equations  given in Fig. 10 accom- 
plish the  practically  desirable goal of requiring  all  crys- 
tals  to  have  the  same  motional  capacitance (C,) having 
a reactance (X,); and, in addition,  are  based on the 
specific procedure of making  all  the mesh impedance 
levels  be  the  same  and  equal  to XO. These  element  value 
design  equations  are  obtained  by  steps  similar  to  those 
detailed  in  Section V. 

The  first  element  value  equation, 

X, 
[I - j rot31 ( ~ 1 2  + M I 2  -YO = (32) 
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LOWER-SIDEBAND FILTER DESIGN RESUME FOR UNIFORM- capacitors is then  calculated  from 
MESH-IMPEDANCE CASE 

etc. R n  

I I 

Fig. 10. The lower sideband filter configuration 
and  its element va!ue design equations. 

fixes the mesh impedance level which must  be  used, 
once the  actual  crystal  motional  impedance is known, 
and  the  SSB  relative-attenuation  shape  is  picked. All 
crystals  have  this  same  motional  reactance X,. 

The second element  value  equation,  (33), fixes the 
capacitance (C,) which must  appear across the series- 
resonant  circuit of each  crystal. 

I I  1 I I 

- _  - 
C, - !BW3)\  1 - -  1 i? + k?3)  1. 1 (33) 

This  one  capacitance  value is across all the  crystals,  and, 
of course, to find the  value of the  actual  physical  capaci- 
tor which must  be placed  across each  crystal  unit,  the 
crystal  holder  capacitance (CJ,) must  be  subtracted 
from C,. 

Because (33) is  identical to (29), the  maximum  physi- 
cally  realizable  bandwidth discussion  given in Section 
\'-E applies  also  to  this  particular lower sideband  filter 
design. 

The  third  element  value  equation,  (34), gives the re- 
quired  series-resonant  frequency for  all the  crystals, in 
terms of arithmetic  3-dB-down  mid-frequency fm. 

rOr3 

All crystals  have  this  same  series-resonant  frequency. 
In  the preceding  three  equations,  the  two  adjacent 

normalized  coefficients of coupling  which are  summed 
must  be  the  two which  (for the  relative-attenuation 
shape  chosen)  give  the  largest  sum.  For  the  great  ma- 
jority of desirable  shapes  the  largest  sum will be  that 
of (kl2+kZ3) and,  therefore,  these  are  the  two  shown  in 
the  equations  as given 

The  required  value  for  each of the (n-1) coupling 

with Xz3, X M ,  etc.  and k23,  k u ,  etc.,  replacing X I P  and k12, 

respectively. 
Next,  by  adding  the  capacitors X,,, as  in  Fig. 10, the 

total  capacitive  reactance in each mesh  (with the  crystal 
unit  figuratively  removed)  is  made  the  same as   that  in 
the mesh having  the  largest  total series capacitive  re- 
actance.  For  most  desirable  relative-attenuation  shapes 
this  largest  total will occur in the second mesh,  and  this 
is the mesh  referenced  in the  statement in  Fig. 10. 
Equation (36) illustrates  this  step. 

x,,  = (XI?  + Xsa) - x12 
x,, = (Xl? + X23) - ( X 2 3  + X34) 

x,, = (Xl? + X23) - ( X 3 4  + X46) (36) 
etc. 

Finally,  the  required  loading  resistors  are  calculated 
from 

with R, and d, replacing RI and dl ,  respectively, to  ob- 
tain  the loading  resistor  required in the  last mesh. 

I t  is  worth  pointing  out  that  the series capacitors X, 
can  always  be  properly  associated  with  the  adjacent 
shunt coupling  capacitors to form T's  of capacitance, 
uhich  can  then  be  transformed  to  equivalent K'S. When 
this is done,  every  internal  network  node  has  a  required 
capacitance  both  to  ground  and  to  the  adjacent node, 
and  there  are  then no unavoidable  internal  stray  capaci- 
tances  to  ground,  or  otherwise, which cannot  be properl!. 
absorbed in the  network.  Similarly,  to  end  up  with re- 
quired  capacitance  to  ground at  the  input  and  output 
terminals of the  network,  the parallel equivalent (over 
the  small-percentage-bandwidth  involved) of the series 
combination of R1 and X,,, and R,  and X,, is used. 

I t  should  be  stressed that  the simple  element  value 
design equations of this  section  are for the case of equal 
mesh  impedances  and  identical  crystal  units in each 
mesh;  to  simultaneously  satisfy  both  these  require- 
ments,  the series capacitors (Cs) of Fig. 10 are  required. 
A design which still makes use of identical  crystal  units 
in each  mesh, but does not  require  the series capacitors, 
can  be  accomplished  by allowing  each  mesh to  have a 
different  impedance level. 

VII. COXCLL-SIOS 
The derived  frequency  transformations of (9) and 

(14) enable  the  engineer  to  accurately  and  simply  com- 
pute  the  SSB  relative-attenuation  shapes which can  be 
obtained  with  the  particular  SSB  ladder  filters  shown 
in  Figs. 9 and 10. From  the  relative-attenuation  graphs, 
Figs. 5-8, and  the  computation  example of Table 111, 



PROCEEDISGS OF THE IEEE VOL. 53, XO. 9 SEPTEMBER, 1965 

9 and 10, the engineer can  accurately  calculate  the re- [61 -I “TWO new equations for the design of filters,” Elect. 
quired  value of all of the  circuit  elements  involved. Commun., vol. 30, pp. 324-337, December 1953; vol. 32, p. 178, 
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The  Electromagnetic  Propagation Characteristics 
of Venus and Mars 

Abstract-The  information available about Mars and Venus and 
their atmospheres has  been examined  to determine the electre 
magnetic propagation characteristics of each planet. Consideration of 
some preliminary model atmospheres [6] indicates that the electre 
magnetic propagation effective radius of Venus is between 7400 
and 13 900 km.  Other models are discussed which give even larger 
effective radii and lead to the limit of a plane surface.  The tropo- 
sphere of Mars,  because of its low density,  was shown to  have 
essentially no effect on the propagation loss between points on the 
surface or near the surface. 

An examination of the  knowledge of the dielectric constants and 
conductivities of the surface revealed considerable uncertainties. 
Measured  values of the dielectric constant are between 2.2 and 
7.1 for the Venusian surface. The conductivity probably is 
10-3 mhos/meter or less for both the Venusian and  Martian surfaces 
if they have compositions similar to  dry terrestrial soil. No measure- 
ment of the dielectric constant of the surface of Mars has been 
published. 

Mars and Venus are strongly believed to have ionospheres in 
their atmospheres, but only crude estimations are available for the 
electron densities and the  altitudes of these ionospheres. 

T 
I. INTRODUCTION 

H E  AIODES of propagation of electromagnetic 
energy  around liars  and  Venus  are basically the 
same  as for Earth.  The physical  situation of all 

three  is  a  sphere  surrounded  by  an  atmosphere. The 
spherical  surfaces will have  different  values of curvature, 
dielectric  constant,  permeability,  and  conductivity.  The 
atmospheres differ in amount, composition,  and  tem- 
perature,  and  the  ionospheres  are  expected  to  exist in 
the  upper regions. 

The author is with the Tucson Research Lab., Bell Aerosystems 
Manuscript received September 28, 1964; revised April 1, 1965. 

Co., Tucson, Ariz. 

1Iuch of the discussion  in this  paper will center 
around model atmospheres.  Theories of atmospheres 
have  been  developed  and  are  being  improved.  Certain 
bits of information  about  the  atmospheres of planets 
have  been  obtained  from  spectroscopic,  radiometric,  and 
polarimetric  measurements.  The  amount of solar  radia- 
tion  incident on a  planet  and  its  atmosphere  can  be  de- 
termined from its  distance  from  the  sun.  These  bits of 
information  have been combined  with  atmospheric 
theories [l] to  determine model atmospheres.  Consider- 
able  uncertainities  exist in the  data used, and  the  at- 
mospheric  theories are  not  as  detailed  as  desired. S o  
evaluations of an>-  models  are  made in this  paper;  the 
ones  selected  for study  are considered  reasonable possi- 
bilities  by  most  authorities. 

The more  general  engineering  problems of electro- 
magnetic  propagation a t  radio  frequencies  have been  re- 
duced to solution  by  using  certain  equations,  tables, 
curves,  and/or  nomograms.  The  solutions  to  these  prob- 
lems  require  the knowledge of certain  parameters,  such 
as  the  electromagnetic effective planet  radius,  the  di- 
electric  constant  and  the  conductivity of the surface 
material,  and  the effective  dielectric constant,  conduc- 
tivity,  and  height of the ionosphere,  which are known in 
varying  degrees for Earth.  The general  purpose of this 
paper is to  evaluate, where  possible,  these parameters 
for Venus  and  Mars  and  to show  possible limiting  values. 
Where  the  data  are  not  available for any kind of evalua- 
tion,  values  that  might be  assumed are discussed. No 
propagation  situations  are  computed. 

Both  the  variation of the index of refraction in the 
tropospheres of Venus  and  1Iars  and  the electromag- 
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