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Introduction 
To help understand how LC resonant oscillators work and why we desire to have high-Q 
inductors and capacitors, let's first review some resonant circuit concepts from freshman 
college physics (or high school physics for keeners).  No denying it's really basic stuff 
but some of the basic goodies often get overlooked.  Enjoy. 
 
What is Parallel Resonance? 
Parallel resonance occurs when the admittance of a parallel RLC network becomes 
purely real. 

 
The admittance of a parallel RLC network is given by 
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To calculate when parallel resonance occurs, we set the susceptance (imaginary 

component of admittance) to zero and not forgetting that j
j

−=
1  (or 12 −=j ) ☺, we get 
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and arrive at the very familiar result 
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When parallel resonance occurs, we maximize the AC voltage across the RLC network for 
a given AC current.  Since the admittance is purely real at resonance, the AC voltage is 
exactly in phase with the external AC current. 

Physically, energy storage is sloshing back and forth at the resonance frequency between 
the capacitor's electric fields (as 2

2
1 CV  when voltage appears across the capacitor) and 

the inductor's magnetic fields (as 2
2
1 LI  when current flows through the inductor).  In the 

case when RP is infinite, the shunt resistor disappears and there is no loss mechanism.  
The resulting total energy stored in both capacitor and inductor remains constant without 
an external energy source, and hence the voltage amplitude remains constant and persists 
indefinitely without need to have external energy injected periodically in order to sustain 
the voltage oscillations.  If RP is not infinite, any voltage across LP-CP will cause current 
to flow through RP and hence dissipate heat.  In this case, external energy must be 
supplied to overcome the ohmic loss in RP or the voltage oscillation will decay in 
amplitude and eventually cease to exist. 
 
What is Series Resonance? 
Series resonance occurs when the impedance of a series RLC network becomes purely 
real. 
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The impedance of a series RLC network is given by 
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To calculate when series resonance occurs, we set the reactance (imaginary component of 
impedance) to zero 
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and arrive at the just-as-familiar result 
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When parallel resonance occurs, we maximize the AC current across the RLC network for 
a given AC voltage.  Since the impedance is purely real at resonance, the AC current is 
exactly in phase with the external AC voltage. 



Dealing with Other RLC Networks 

It is very critical to realize that Eqs. (3) and (6) hold ONLY for purely parallel and series 
RLC networks respectively.  If you have an RLC network that is not an exact match to 
either a parallel or series RLC network, you obviously cannot use Eq. (3) or (6) – not 
terribly profound but a common mistake one may be tempted to make. 

To obtain the resonance frequency for a more complex RLC network, you have two 
approaches: 

Method 1. Compute the net impedance or admittance, and force the imaginary 
component to zero to solve for the resonance condition (you quickly 
rediscover your frustration with algebra this way) , or 

Method 2. Transform the RLC network into a purely parallel RLC or series RLC network 
in order to apply Eqs. (3) or (6) using the transformed values of L and C. 

 
Impedance Transformations 
So what's an impedance transformation after all?  The basic goal is to map an impedance 
(R+jX) into an equivalent admittance (G+jS), or vice versa. 

For starters, take an inductor LS with some parasitic series resistance RS.  Our goal is to 
map the series LS-RS combination into an equivalent parallel LP-RP combination. 

RS

LS
LP = ? RP = ?

 
We simply write 

 SSS RLjZ += ω  and 
PP

P RLj
Y 11

+=
ω

 (7a), (7b) 

Equating real and imaginary components of P
S

Y
Z

≡
1 , we obtain after some manipulation 
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Notice that the transformation is frequency-dependent, so using fixed values of LP and RP 
is a good approximation only over a narrow frequency band.  Also, observe that when the 
inductor is ideal (RS = 0), we arrive at the intuitively satisfying result LP = LS since RP is 
infinite. 



We now move on to transform a capacitor CS with parasitic series resistance RS. 

RS

CS
CP = ? RP = ?

 
We write 
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and obtain similar expressions 
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Once again, note the frequency dependence of the transformation.  And also note that 
when the capacitor is ideal (RS = 0), we arrive at the unsurprisingly result CP = CS since 
RP is infinite. 
 
A Practical Example 

You may suspect that the preceding transformation examples, i.e., the fact that I've glibly 
ignored transforming admittances back to impedances, seem to suggest that parallel RLC 
networks are perhaps more useful than series RLC networks, and this is probably true.  
Why?  Well, when we build resonant circuits, voltage is usually the output variable of 
interest, not current.  In other words, we're usually in the business of generating a large 
voltage swing using as little current or power as possible. 

Consider the following RLC network. 

 
This is a decent representation of a tank network in basic LC oscillators.  RL seems 
representative of metal resistance in a planar spiral inductor while RC represents series 
channel and source/drain resistance in a voltage-tunable MOS varactor.  After all of the 
above commotion, we could now conclude confidently and emphatically that the resonant 

frequency 
LCres
1

=ω , couldn't we? 



If we proceed with Method 1, we'll quickly arrive at the following expression for net 
impedance: 
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After making the imaginary component vanish and enduring some algebra, we get 
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We can also proceed with Method 2 and arrive at Eq. (14) more quickly using Eqs. (8), 
(9), (11), and (12). 
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Grouping the two transformed shunt resistors together, we're back to our faithful parallel 
RLC network.  The resulting resonant frequency is hence 
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I'll leave it as an exercise for you, the reader, to convince yourself that Eqs. (14) and (15) 
are indeed equivalent.  ☺ 

Regardless of which method you choose to compute the resonant frequency, it should be 

clear that 
LCres
1

=ω  only when the series losses are nulled out but when is reality ever 

this ideal? 
 



Admittance Transformations 

So I've lied a little by understating the transformation of admittances back to impedances.   
For completeness, let's transform a shunt inductance/resistance combination. 

 
With a little math, we readily obtain 
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For a shunt capacitance/resistance combination, 

RPCP
CS = ?

RS = ?

 
we obtain similar equations 
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The combination of impedance and admittance transformation equations could prove 
useful, for example, to reduce the following more realistic model of a MOS varactor, 
where RP represents gate leakage, into a simple shunt capacitance/resistance network. 

 



Why the Fuss about Q's? 

When we think of the Q or quality factor of a resonant network, we typically think of the 
ratio of resonant frequency to bandwidth, i.e., the frequency selectivity sharpness of a 
tank's bandpass filter action.  However, the interpretation of inductor or capacitor Q may 
not be so obvious.  Fundamentally, 
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It is the ratio of energy stored in the reactive element to the power dissipated in that 
element's loss mechanism(s).  So Q is really a measure of a reactive element's ideality 
where infinite Q implies a perfectly lossless energy storage element; stated conversely, 
the lower the Q, the lossier the element. 

Sparing the derivation details, Eq. (20) can be employed to derive 

 
L

L R
LQ ω

≈   and (21) 

 
C

C CR
Q

ω
1

≈  . (22) 

where RL and RC are resistances in series with L and C respectively.  Although having 
only a simple series resistance is a gross lumped modeling oversimplification for 
integrated inductors and capacitors, Eqs. (17) and (18) do provide a very basic insight.  
To first order, they suggest that inductor Q improves with increasing frequency while 
capacitor Q does the opposite. 

In practical ICs, this means that inductor Q typically limits tank Q at lower frequencies 
while capacitor Q typically limits tank Q at higher frequencies.  So as LC oscillators are 
built to target even higher frequencies, the importance of high-Q capacitors becomes 
increasingly higher. 
 
Why Use High-Q Elements for LC Oscillators? 
Simple –.for low power and more importantly, for low noise and low clock jitter.  Quieter 
clocks mean higher operating frequencies because the window of uncertainty for timing 
events is much tighter. 

The effective Q of a tank is computed as 
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Like resistors in parallel, the tank Q is limited by the smaller of QL and QC.  If we use 
high-Q inductors and capacitors, the equivalent shunt resistance of a parallel RLC 
network will be large.  Ohm's Law tells us that a small amount of externally injected 
current will develop a large voltage oscillation amplitude across the shunt resistor, which 
intuitively translates to high signal-to-noise ratio.  And if we depend on energy from 
noisy transistors less frequently to sustain oscillation, that ultimately means less 1/f and 
thermal noise being added to the tank. 



The Importance of Accurate LC Modeling 

One of the beauties of LC oscillators is that if you model the L and C elements accurately, 
the oscillator frequency can be predicted with high accuracy.  That simple!  Problem is 
that building high-Q L's and C's is not achievable in a monolithically integrated oscillator, 
which means you need to get RL and RC right too.  Restating Eq. (14) below, RL and RC 
clearly cannot be ignored. 
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I'll throw out a simple example to illustrate how the impact of RL might be important.  
Consider what happens when the temperature of the oscillator increases from say 0°C to 
100°C.  In a practical oscillator, L and C will be fairly constant across temperature but the 
temperature coefficient of RL could be significant.  For example, one would expect RL to 
increase quite dramatically since metal resistance typically increases by 30% across 
100°C.  Having said this, Eq. (14) says the oscillator frequency will decrease as 
temperature increases.  Indeed, this is typically observed in silicon because most practical 
oscillators are still dominated by RL instead of RC.  This temperature sensitivity also 
impacts the tuning range requirement of an oscillator.  Since oscillators are most 
practically used in a phase-locked loop where the output phase (and frequency) is locked 
to a much lower frequency reference in order to produce a stable clock independent of 
PVT, the capacitance that tunes the oscillator must clearly be adjusted in order to 
maintain a constant oscillator frequency as temperature increases.  The degree of 
capacitance adjustment required is obviously a function of how much the oscillator 
frequency would want to drift across temperature if no capacitance feedback correction 
were applied.  Clearly, none of these considerations would surface if we had only naively 
considered L and C while neglecting the impact of RL and RC. 
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